The task is to count all the possible paths from top left to bottom right of a m x n matrix with the constraints that from each cell you can either move only to right or down.
Input:
First line consists of T test cases. First line of every test case consists of N and M, denoting the number of rows and number of columns respectively.
Output:
Single line output i.e count of all the possible paths from top left to bottom right of a m x n matrix..
Constraints:
1<=T<=100
1<=N<=100
1<=M<=100
SOLUTION (JAVA):
import java.util.Scanner; public class MyClass { static int count =0,m,n; public static void main(String args[]) { Scanner sc = new Scanner(System.in); m= sc.nextInt(); n= sc.nextInt(); findWays(1,1); System.out.println(count); } static void findWays(int i, int j) { if(i>m || j>n) return; if(i==m && j==n){ count++; } findWays(i, j+1); findWays(i+1,j); } }
SOLUTION (C):
#include <stdio.h> int getPaths(int i, int j, int m, int n){ if(i==m && j==n) return 1; if(i>m || j>n) return 0; return getPaths(i+1,j,m,n)+ getPaths(i,j+1,m,n); } int main() { int m,n,i,j; scanf("%d %d", &m, &n); printf("total paths are : %d", getPaths(0,0,m-1,n-1)); return 0; }